

Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?

- Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?
 - If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?

- Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?
 - If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?

$$\bullet H_0: \mu_N = \mu_S = \mu_E = \mu_W$$

- Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?
 - If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
 - $\bullet H_0: \mu_N = \mu_S = \mu_E = \mu_W$
 - Assume that for each t-test, we correctly reject H₀ when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H₀ when it's false with probability 0.95?

- Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?
 - If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
 - $\blacktriangleright H_0: \mu_N = \mu_S = \mu_E = \mu_W$
 - Assume that for each t-test, we correctly reject H₀ when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H₀ when it's false with probability 0.95?
 - The probability of making type I error now is $1 0.95^6 \approx 0.265$

- Student t-statistics are indispensable tools for comparing two population means. What if we need to compare three or more means?
 - If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
 - $\blacktriangleright H_0: \mu_N = \mu_S = \mu_E = \mu_W$
 - Assume that for each t-test, we correctly reject H₀ when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H₀ when it's false with probability 0.95?
 - The probability of making type I error now is $1 0.95^6 \approx 0.265$
- We cannot carry out multiple t-tests because it inflates the type I error.

- ► The data should be from a normally distributed population
- The variance in each experimental condition is fairly similar (homogeneity of variance)
- Observations should be independent and random
- The dependent variable should be measured on at least an interval scale.

One-way ANOVA Comparing population means of c groups

Hypotheses:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_c$$

 H_1 : Not all population means are equal

• Test Statistics:
$$F = \frac{MSB}{MSW} = \frac{SSB/(c-1)}{SSW/(n-c)}$$
 where

- MSB: Mean square between groups
- MSW: Mean square within groups
- SSB: Sum square between groups
- SSW: Sum square within groups
- SST: Total sum square
- $\blacktriangleright SST = SSB + SSW$

• Decision Rule: Reject H_0 if $F > F_u = F_{\alpha,c-1,n-c}$

One-way ANOVA Tukey-Kramer Procedure

Critical range

$$egin{aligned} Q_u imes \sqrt{rac{MSW}{2}(rac{1}{n_j}+rac{1}{n_{j'}})} \ Q_u &= Q_{lpha,c,n-c} \end{aligned}$$

- This is an experimental technique where data in groups are divided into fairly homogeneous subgroups called blocks to remove variability from random error.
- If we discover that there is a significant treatment effect in a randomised block design, then the next step is to make comparisons between means using the Tukey procedure.

- n observations, c groups, r blocks
- Hypotheses:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$

 H_1 : Not all population means of r blocks are equal

► Test Statistics:
$$F = \frac{MSBL}{MSE} = \frac{SSBL/(r-1)}{SSE/(c-1)(r-1)}$$
 where

- MSBL: Mean square between block
- SSE: Sum square errors
- MSE: Mean square errors
- SSBL: Sum square between blocks
- $\blacktriangleright SSE = SST SSBL SSB$

• Decision Rule: Reject H_0 if $F > F_u = F_{\alpha,r-1,(c-1)(r-1)}$

Hypotheses:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$

 H_1 : Not all population means of c groups are equal

► Test Statistics: $F = \frac{MSB}{MSE} = \frac{SSB/(c-1)}{SSE/(c-1)(r-1)}$ ► Decision Rule: Reject H_0 if $F > F_u = F_{\alpha,c-1,(c-1)(r-1)}$

Randomised Block Design

$$Q_{u} imes \sqrt{rac{MSE}{2}}$$

 $Q_{u} = Q_{lpha,c,(c-1)(r-1)}$