

I Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?

- ▶ Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?
	- \blacktriangleright If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?

- ▶ Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?
	- \blacktriangleright If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?

$$
\blacktriangleright H_0: \mu_N = \mu_S = \mu_E = \mu_W
$$

- ▶ Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?
	- \blacktriangleright If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
	- $H_0: \mu_N = \mu_S = \mu_E = \mu_W$
	- \triangleright Assume that for each t-test, we correctly reject H_0 when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H_0 when it's false with probability 0.95 ?

- ▶ Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?
	- \blacktriangleright If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
	- $H_0: \mu_N = \mu_S = \mu_F = \mu_W$
	- \triangleright Assume that for each t-test, we correctly reject H_0 when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H_0 when it's false with probability 0.95 ?
	- \triangleright The probability of making type I error now is 1 0.95⁶ ≈ 0.265

- ▶ Student t-statistics are indispensable tools for comparing **two** population means. What if we need to compare three or more means?
	- \blacktriangleright If we want to see whether average income are different at four locations: North, South, East, and West, how many t-test do we need to run?
	- $H_0: \mu_N = \mu_S = \mu_E = \mu_W$
	- \triangleright Assume that for each t-test, we correctly reject H_0 when it's false with probability 0.95. What is the probability that all of the pairwise t-tests correctly reject H_0 when it's false with probability 0.95 ?
	- \triangleright The probability of making type I error now is 1 0.95⁶ ≈ 0.265
- \triangleright We cannot carry out multiple t-tests because it inflates the type I error.

- \blacktriangleright The data should be from a normally distributed population
- \blacktriangleright The variance in each experimental condition is fairly similar (homogeneity of variance)
- \triangleright Observations should be independent and random
- \triangleright The dependent variable should be measured on at least an interval scale.

One-way ANOVA Comparing population means of c groups

\blacktriangleright Hypotheses:

$$
H_0:\mu_1=\mu_2=\cdots=\mu_c
$$

 H_1 : Not all population means are equal

• Test Statistics:
$$
F = \frac{MSB}{MSW} = \frac{SSB/(c-1)}{SSW/(n-c)}
$$
 where

- ▶ *MSB*: Mean square between groups
- ▶ *MSW*: Mean square within groups
- ► *SSB*: Sum square between groups
- ▶ *SSW*: Sum square within groups
- ▶ *SST*: Total sum square
- \blacktriangleright *SST* = *SSR* + *SSW*

 \triangleright Decision Rule: Reject *H*₀ if $F > F_u = F_{\alpha, c-1, n-c}$

One-way ANOVA Tukey-Kramer Procedure

\blacktriangleright Critical range

$$
Q_{\mathsf{U}} \times \sqrt{\frac{\mathsf{MSW}}{2}(\frac{1}{n_j} + \frac{1}{n_{j^{'}}})}
$$

$$
Q_{\mathsf{U}} = Q_{\alpha,c,n-c}
$$

\n- Calculate
$$
|\bar{X}_j - \bar{X}_j'|
$$
\n- If $|\bar{X}_j - \bar{X}_j'|$ > Critical range, then $\mu_j \neq \mu_{j'}$
\n- Number of pairs is $\frac{c(c-1)}{2}$
\n

- \triangleright This is an experimental technique where data in groups are divided into fairly homogeneous subgroups called blocks to remove variability from random error.
- \blacktriangleright If we discover that there is a significant treatment effect in a randomised block design, then the next step is to make comparisons between means using the Tukey procedure.

- \blacktriangleright n observations, c groups, r blocks
- \blacktriangleright Hypotheses:

*H*₀ : $\mu_1 = \mu_2 = \cdots = \mu_r$

 H_1 : Not all population means of r blocks are equal

• Test Statistics:
$$
F = \frac{MSBL}{MSE} = \frac{SSBL/(r-1)}{SSE/(c-1)(r-1)}
$$
 where

- ► *MSBL*: Mean square between block
- ▶ *SSE*: Sum square errors
- ▶ *MSE*: Mean square errors
- ▶ *SSBL*: Sum square between blocks
- I *SSE* = *SST* − *SSBL* − *SSB*

 \blacktriangleright Decision Rule: Reject *H*₀ if *F* > *F_u* = *F*_{α,*r*-1,(*c*-1)(*r*-1)}

\blacktriangleright Hypotheses:

*H*₀ : $\mu_1 = \mu_2 = \cdots = \mu_r$

 H_1 : Not all population means of c groups are equal

► Test Statistics: $F = \frac{MSB}{MSE} = \frac{SSB/(c-1)}{SSE/(c-1)(r-1)}$ *SSE*/(*c* − 1)(*r* − 1) \blacktriangleright Decision Rule: Reject *H*₀ if *F* > *F_u* = *F*_{α,*c*−1,(*c*−1)(*r*−1)}

Randomised Block Design Tukey-Kramer Procedure

\blacktriangleright Critical range

$$
Q_{\mathsf{U}} \times \sqrt{\frac{\mathsf{MSE}}{2}}
$$

$$
Q_{\mathsf{U}} = Q_{\alpha,c,(c-1)(r-1)}
$$

\n- Calculate
$$
|\bar{X}_j - \bar{X}_j'|
$$
\n- If $|\bar{X}_j - \bar{X}_j'|$ > Critical range, then $\mu_j \neq \mu_{j'}$
\n